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We describe a framework for multiscale finite and boundary element analysis derived from recent ideas in wavelet
and subdivision theory. Our wavelet approach is a natural extension to hierarchical finite elements[4], which use
primitive wavelets with no vanishing moments. A distinguishing feature of our method is that it allows the con-
struction of second-generation[3] multiwavelets of desired order and smoothness over non-uniformly discretized
domains, starting from traditional finite elements. For example, by applying the concepts of finite element subdi-
vision[2] and lifting[3] we can construct a family of Hermite interpolating multiwavelets which (in the simplest
case) satisfy the following refinement and wavelet relations[1]:
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Similar equations may be derived in higher dimensions. For example, Figure 1 shows two of the scaling func-
tion and wavelet pairs that generalize the Bogner-Fox-Schmidt plate bending elements. Our approach therefore
establishes an important connection between displacement-based finite element analysis and multiscale signal
processing.

The finite element wavelets that we describe offer several advantages over the “single level” formulation for pre-
conditioning, adaptivity, fast solution of eigenvalue problems and level-of-detail analysis of the solution. More-
over, by an appropriate choice of lifting coefficients,Sj[k,m], the resulting wavelets may be adapted both to the
geometry as well as the differential operator. We present several applications to illustrate our approach.
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Figure 1: Displacement and rotation scaling functions and wavelets with with four vanishing moments.


